Advertisements
Advertisements
प्रश्न
Simplify:
(5 − x)(6 − 5x)( 2 − x)
उत्तर
To simplify, we will proceed as follows:
\[\left( 5 - x \right)\left( 6 - 5x \right)\left( 2 - x \right)\]
\[ = \left[ \left( 5 - x \right)\left( 6 - 5x \right) \right]\left( 2 - x \right)\]
\[= \left[ 5\left( 6 - 5x \right) - x\left( 6 - 5x \right) \right]\left( 2 - x \right)\] (Distributive law)
\[= \left( 30 - 25x - 6x + 5 x^2 \right)\left( 2 - x \right)\]
\[ = \left( 30 - 31x + 5 x^2 \right)\left( 2 - x \right)\]
\[ = 2\left( 30 - 31x + 5 x^2 \right) - x\left( 30 - 31x + 5 x^2 \right)\]
\[ = 60 - 62x + 10 x^2 - 30x + 31 x^2 - 5 x^3\]
\[= 60 - 62x - 30x + 10 x^2 + 31 x^2 - 5 x^3\] (Rearranging)
\[= 60 - 92x + 41 x^2 - 5 x^3\] (Combining like terms)
Thus, the answer is \[60 - 92x + 41 x^2 - 5 x^3\].
APPEARS IN
संबंधित प्रश्न
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(x2)3 × (2x) × (−4x) × (5)
Evaluate (3.2x6y3) × (2.1x2y2) when x = 1 and y = 0.5.
Find the following product:
0.1y(0.1x5 + 0.1y)
Find the following product:
1.5x(10x2y − 100xy2)
Simplify: x(x + 4) + 3x(2x2 − 1) + 4x2 + 4
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Multiply:
(2x2 − 1) by (4x3 + 5x2)
Simplify : (2.5p − 1.5q)2 − (1.5p − 2.5q)2