Advertisements
Advertisements
प्रश्न
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
उत्तर
We have to find the product of the expression in order to express it as a monomial.
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( 4 x^2 \right) \times \left( - 3x \right) \times \left( \frac{4}{5} x^3 \right)\]
\[ = \left\{ 4 \times \left( - 3 \right) \times \frac{4}{5} \right\} \times \left( x^2 \times x \times x^3 \right)\]
\[ = \left\{ 4 \times \left( - 3 \right) \times \frac{4}{5} \right\} \times \left( x^{2 + 1 + 3} \right)\]
\[ = - \frac{48}{5} x^6\]
\[\therefore\] \[\left( 4 x^2 \right) \times \left( - 3x \right) \times \left( \frac{4}{5} x^3 \right) = - \frac{48}{5} x^6\]
Substituting x = 1 in LHS, we get:
\[\text { LHS } = \left( 4 x^2 \right) \times \left( - 3x \right) \times \left( \frac{4}{5} x^3 \right)\]
\[ = \left( 4 \times 1^2 \right) \times \left( - 3 \times 1 \right) \times \left( \frac{4}{5} \times 1^3 \right)\]
\[ = 4 \times \left( - 3 \right) \times \frac{4}{5}\]
\[ = - \frac{48}{5}\]
Putting x = 1 in RHS, we get:
\[\text { RHS } = - \frac{48}{5} x^6 \]
\[ = - \frac{48}{5} \times 1^6 \]
\[ = - \frac{48}{5}\]
\[\because\] LHS = RHS for x = 1; therefore, the result is correct
Thus, the answer is \[- \frac{48}{5} x^6\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
5x2 × 4x3
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
Find each of the following product: \[( - 7xy) \times \left( \frac{1}{4} x^2 yz \right)\]
Write down the product of −8x2y6 and −20xy. Verify the product for x = 2.5, y = 1.
Evaluate (−8x2y6) × (−20xy) for x = 2.5 and y = 1.
Find the following product:
4.1xy(1.1x − y)
Simplify: x3y(x2 − 2x) + 2xy(x3 − x4)
Multiply:
(2x2 − 1) by (4x3 + 5x2)
Simplify : (x − y)(x + y) (x2 + y2)(x4 + y2)
Simplify : (2.5p − 1.5q)2 − (1.5p − 2.5q)2