Advertisements
Advertisements
प्रश्न
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
उत्तर
We have to find the product of the expression in order to express it as a monomial.
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( 4 x^2 \right) \times \left( - 3x \right) \times \left( \frac{4}{5} x^3 \right)\]
\[ = \left\{ 4 \times \left( - 3 \right) \times \frac{4}{5} \right\} \times \left( x^2 \times x \times x^3 \right)\]
\[ = \left\{ 4 \times \left( - 3 \right) \times \frac{4}{5} \right\} \times \left( x^{2 + 1 + 3} \right)\]
\[ = - \frac{48}{5} x^6\]
\[\therefore\] \[\left( 4 x^2 \right) \times \left( - 3x \right) \times \left( \frac{4}{5} x^3 \right) = - \frac{48}{5} x^6\]
Substituting x = 1 in LHS, we get:
\[\text { LHS } = \left( 4 x^2 \right) \times \left( - 3x \right) \times \left( \frac{4}{5} x^3 \right)\]
\[ = \left( 4 \times 1^2 \right) \times \left( - 3 \times 1 \right) \times \left( \frac{4}{5} \times 1^3 \right)\]
\[ = 4 \times \left( - 3 \right) \times \frac{4}{5}\]
\[ = - \frac{48}{5}\]
Putting x = 1 in RHS, we get:
\[\text { RHS } = - \frac{48}{5} x^6 \]
\[ = - \frac{48}{5} \times 1^6 \]
\[ = - \frac{48}{5}\]
\[\because\] LHS = RHS for x = 1; therefore, the result is correct
Thus, the answer is \[- \frac{48}{5} x^6\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
−3a2 × 4b4
Find each of the following product:
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
Find each of the following product:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
Find the following product:
250.5xy \[\left( xz + \frac{y}{10} \right)\]
Multiply:
(5x + 3) by (7x + 2)
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
Simplify:
x2(x − y) y2(x + 2y)
Multiply:
23xy2 × 4yz2
Multiply:
(12a + 17b) × 4c