Advertisements
Advertisements
प्रश्न
Find each of the following product:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
\[ = \left( 0 . 5 \times \frac{1}{3} \times 24 \right) \times \left( x \times x \times x^2 \right) \times \left( y^2 \times y \right) \times \left( z^4 \times z \right)\]
\[ = \left( 0 . 5 \times \frac{1}{3} \times 24 \right) \times \left( x^{1 + 1 + 2} \right) \times \left( y^{2 + 1} \right) \times \left( z^{4 + 1} \right)\]
\[ = 4 x^4 y^3 z^5\]
Thus, the answer is \[4 x^4 y^3 z^5\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
5x2 × 4x3
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Find each of the following product: \[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
Simplify: 3a2 + 2(a + 2) − 3a(2a + 1)
Multiply:
(7x + y) by (x + 5y)
Simplify:
a2b2(a + 2b)(3a + b)
Simplify:
(5x − 3)(x + 2) − (2x + 5)(4x − 3)
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2
Multiply:
23xy2 × 4yz2
Solve the following equation.
5(x + 1) = 74