Advertisements
Advertisements
Question
Find each of the following product:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
Solution
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
\[ = \left( 0 . 5 \times \frac{1}{3} \times 24 \right) \times \left( x \times x \times x^2 \right) \times \left( y^2 \times y \right) \times \left( z^4 \times z \right)\]
\[ = \left( 0 . 5 \times \frac{1}{3} \times 24 \right) \times \left( x^{1 + 1 + 2} \right) \times \left( y^{2 + 1} \right) \times \left( z^{4 + 1} \right)\]
\[ = 4 x^4 y^3 z^5\]
Thus, the answer is \[4 x^4 y^3 z^5\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Find each of the following product: \[\left( \frac{4}{3} u^2 vw \right) \times \left( - 5uv w^2 \right) \times \left( \frac{1}{3} v^2 wu \right)\]
Find each of the following product:
(2.3xy) × (0.1x) × (0.16)
Express each of the following product as a monomials and verify the result in each case for x = 1:
(3x) × (4x) × (−5x)
Find the following product:
0.1y(0.1x5 + 0.1y)
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Multiply:
[−3d + (−7f)] by (5d + f)
Show that: \[\left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]
Multiply:
16xy × 18xy