Advertisements
Advertisements
Question
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Solution
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\]
We have:
\[\left( - 5a \right) \times \left( - 10 a^2 \right) \times \left( - 2 a^3 \right)\]
\[ = \left\{ \left( - 5 \right) \times \left( - 10 \right) \times \left( - 2 \right) \right\} \times \left( a \times a^2 \times a^3 \right)\]
\[ = \left\{ \left( - 5 \right) \times \left( - 10 \right) \times \left( - 2 \right) \right\} \times \left( a^{1 + 2 + 3} \right)\]
\[ = - 100 a^6 \]
Thus, the answer is \[- 100 a^6\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
(−5xy) × (−3x2yz)
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
Find each of the following product:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
Evaluate (3.2x6y3) × (2.1x2y2) when x = 1 and y = 0.5.
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
Find the product −3y(xy + y2) and find its value for x = 4 and y = 5.
Simplify: x(x + 4) + 3x(2x2 − 1) + 4x2 + 4
Simplify:
(3x − 2)(2x − 3) + (5x − 3)(x + 1)
Simplify : (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)
Multiply:
16xy × 18xy