Advertisements
Advertisements
Question
Simplify:
(3x − 2)(2x − 3) + (5x − 3)(x + 1)
Solution
To simplify, we will proceed as follows:
\[\left( 3x - 2 \right)\left( 2x - 3 \right) + \left( 5x - 3 \right)\left( x + 1 \right)\]
\[ = \left[ \left( 3x - 2 \right)\left( 2x - 3 \right) \right] + \left[ \left( 5x - 3 \right)\left( x + 1 \right) \right]\]
\[= \left[ 3x\left( 2x - 3 \right) - 2\left( 2x - 3 \right) \right] + \left[ 5x\left( x + 1 \right) - 3\left( x + 1 \right) \right]\] (Distributive law)
\[= 6 x^2 - 9x - 4x + 6 + 5 x^2 + 5x - 3x - 3\]
\[= 6 x^2 + 5 x^2 - 9x - 4x + 5x - 3x - 3 + 6\] (Rearranging)
\[= 11 x^2 - 11x + 3\] (Combining like terms)
Thus, the answer is \[11 x^2 - 11x + 3\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Find each of the following product:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
Find each of the following product:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Find the following product: \[\frac{4}{3}a( a^2 + b^2 - 3 c^2 )\]
Simplify: a(b − c) − b(c − a) − c(a − b)
Simplify: 2a2 + 3a(1 − 2a3) + a(a + 1)
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Multiply:
16xy × 18xy