Advertisements
Advertisements
प्रश्न
Simplify:
(3x − 2)(2x − 3) + (5x − 3)(x + 1)
उत्तर
To simplify, we will proceed as follows:
\[\left( 3x - 2 \right)\left( 2x - 3 \right) + \left( 5x - 3 \right)\left( x + 1 \right)\]
\[ = \left[ \left( 3x - 2 \right)\left( 2x - 3 \right) \right] + \left[ \left( 5x - 3 \right)\left( x + 1 \right) \right]\]
\[= \left[ 3x\left( 2x - 3 \right) - 2\left( 2x - 3 \right) \right] + \left[ 5x\left( x + 1 \right) - 3\left( x + 1 \right) \right]\] (Distributive law)
\[= 6 x^2 - 9x - 4x + 6 + 5 x^2 + 5x - 3x - 3\]
\[= 6 x^2 + 5 x^2 - 9x - 4x + 5x - 3x - 3 + 6\] (Rearranging)
\[= 11 x^2 - 11x + 3\] (Combining like terms)
Thus, the answer is \[11 x^2 - 11x + 3\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
−3a2 × 4b4
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Find each of the following product:
(−4x2) × (−6xy2) × (−3yz2)
Find the following product:
−11y2(3y + 7)
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
Simplify: a(b − c) − b(c − a) − c(a − b)
Simplify: a2(2a − 1) + 3a + a3 − 8
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Multiply:
(3x2 + y2) by (2x2 + 3y2)
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].