Advertisements
Advertisements
प्रश्न
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
उत्तर
To multiply, we will use distributive law as follows:
\[\left( 3 x^2 y - 5x y^2 \right)\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\]
\[ = \frac{1}{5} x^2 \left( 3 x^2 y - 5x y^2 \right) + \frac{1}{3} y^2 \left( 3 x^2 y - 5x y^2 \right)\]
\[ = \frac{3}{5} x^4 y - x^3 y^2 + x^2 y^3 - \frac{5}{3}x y^4\]
Thus, the answer is \[\frac{3}{5} x^4 y - x^3 y^2 + x^2 y^3 - \frac{5}{3}x y^4\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[( - 7xy) \times \left( \frac{1}{4} x^2 yz \right)\]
Find each of the following product:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
Find each of the following product: \[\left( \frac{4}{3} u^2 vw \right) \times \left( - 5uv w^2 \right) \times \left( \frac{1}{3} v^2 wu \right)\]
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Find the following product:
4.1xy(1.1x − y)
Simplify: x(x + 4) + 3x(2x2 − 1) + 4x2 + 4
Simplify: a2b(a − b2) + ab2(4ab − 2a2) − a3b(1 − 2b)
Multiply:
(2x2y2 − 5xy2) by (x2 − y2)
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Solve the following equation.
6x − 1 = 3x + 8