Advertisements
Advertisements
प्रश्न
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e.,\[a^m \times a^n = a^{m + n}\].
We have:
\[\left( 2xy \right) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
\[ = \left( 2 \times \frac{1}{4} \right) \times \left( x \times x^2 \times x^2 \right) \times \left( y \times y \times y^2 \right)\]
\[ = \left( 2 \times \frac{1}{4} \right) \times \left( x^{1 + 2 + 2} \right) \times \left( y^{1 + 1 + 2} \right)\]
\[ = \frac{1}{2} x^5 y^4\]
\[\therefore\] \[\left( 2xy \right) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right) = \frac{1}{2} x^5 y^4\]
Substituting x = 2 and y = \[-\] 1 in the result, we get:
\[\frac{1}{2} x^5 y^4 \]
\[ = \frac{1}{2} \left( 2 \right)^5 \left( - 1 \right)^4 \]
\[ = \frac{1}{2} \times 32 \times 1\]
\[ = 16\]
Thus, the answer is 16.
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
Evaluate (3.2x6y3) × (2.1x2y2) when x = 1 and y = 0.5.
Find the following product: \[\frac{6x}{5}( x^3 + y^3 )\]
Find the following product:
0.1y(0.1x5 + 0.1y)
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
Simplify: x(x + 4) + 3x(2x2 − 1) + 4x2 + 4
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
Simplify:
x2(x + 2y) (x − 3y)
Simplify:
(5 − x)(6 − 5x)( 2 − x)