Advertisements
Advertisements
प्रश्न
Find the following product: \[\frac{6x}{5}( x^3 + y^3 )\]
उत्तर
To find the product, we will use distributive law as follows:
\[\frac{6x}{5}\left( x^3 + y^3 \right)\]
\[ = \frac{6x}{5} \times x^3 + \frac{6x}{5} \times y^3 \]
\[ = \frac{6}{5} \times \left( x \times x^3 \right) + \frac{6}{5} \times \left( x \times y^3 \right)\]
\[ = \frac{6}{5} \times \left( x^{1 + 3} \right) + \frac{6}{5} \times \left( x \times y^3 \right)\]
\[ = \frac{6 x^4}{5} + \frac{6x y^3}{5}\]
Thus, the answer is \[\frac{6 x^4}{5} + \frac{6x y^3}{5}\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
−3a2 × 4b4
Find each of the following product:
\[\left( - \frac{7}{5}x y^2 z \right) \times \left( \frac{13}{3} x^2 y z^2 \right)\]
Find each of the following product:
(−4x2) × (−6xy2) × (−3yz2)
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
Evaluate (3.2x6y3) × (2.1x2y2) when x = 1 and y = 0.5.
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Simplify:
x2(x − y) y2(x + 2y)
Multiply:
16xy × 18xy
Solve the following equation.
2(x − 4) = 4x + 2