Advertisements
Advertisements
प्रश्न
Find each of the following product:
\[\left( - \frac{7}{5}x y^2 z \right) \times \left( \frac{13}{3} x^2 y z^2 \right)\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( - \frac{7}{5}x y^2 z \right) \times \left( \frac{13}{3} x^2 y z^2 \right)\]
\[ = \left( - \frac{7}{5} \times \frac{13}{3} \right) \times \left( x \times x^2 \right) \times \left( y^2 \times y \right) \times \left( z \times z^2 \right)\]
\[ = \left( - \frac{7}{5} \times \frac{13}{3} \right) \times \left( x^{1 + 2} \right) \times \left( y^{2 + 1} \right) \times \left( z^{1 + 2} \right)\]
\[ = - \frac{91}{15} x^3 y^3 x^3\]
Thus, the answer is \[- \frac{91}{15} x^3 y^3 x^3\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
Find the following product:
1.5x(10x2y − 100xy2)
Simplify: 2x2(x3 − x) − 3x(x4 + 2x) − 2(x4 − 3x2)
Simplify: 4ab(a − b) − 6a2(b − b2) − 3b2(2a2 − a) + 2ab(b − a)
Multiply:
(2x + 8) by (x − 3)
Multiply:
(0.8a − 0.5b) by (1.5a − 3b)
Simplify:
a2b2(a + 2b)(3a + b)
Show that: \[\left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]
Solve the following equation.
5(x + 1) = 74