Advertisements
Advertisements
प्रश्न
Find the following product:
1.5x(10x2y − 100xy2)
उत्तर
To find the product, we will use distributive law as follows:
\[1 . 5x\left( 10 x^2 y - 100x y^2 \right)\]
\[ = \left( 1 . 5x \times 10 x^2 y \right) - \left( 1 . 5x \times 100x y^2 \right)\]
\[ = \left( 15 x^{1 + 2} y \right) - \left( 150 x^{1 + 1} y^2 \right)\]
\[ = 15 x^3 y - 150 x^2 y^2\]
Thus, the answer is \[15 x^3 y - 150 x^2 y^2\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
−3a2 × 4b4
Find each of the following product: \[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
Find each of the following product:
(2.3xy) × (0.1x) × (0.16)
Express each of the following product as a monomials and verify the result in each case for x = 1:
(5x4) × (x2)3 × (2x)2
Find the following product:
2a3(3a + 5b)
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Simplify:
(3x − 2)(2x − 3) + (5x − 3)(x + 1)
Solve the following equation.
2(x − 4) = 4x + 2