Advertisements
Advertisements
प्रश्न
Find each of the following product:
(2.3xy) × (0.1x) × (0.16)
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\]
We have:
\[\left( 2 . 3xy \right) \times \left( 0 . 1x \right) \times \left( 0 . 16 \right)\]
\[ = \left( 2 . 3 \times 0 . 1 \times 0 . 16 \right) \times \left( x \times x \right) \times y\]
\[ = \left( 2 . 3 \times 0 . 1 \times 0 . 16 \right) \times \left( x^{1 + 1} \right) \times y\]
\[ = 0 . 0368 x^2 y\]
Thus, the answer is \[0 . 0368 x^2 y\].
APPEARS IN
संबंधित प्रश्न
Express each of the following product as a monomials and verify the result in each case for x = 1:
(3x) × (4x) × (−5x)
Find the following product:
4.1xy(1.1x − y)
Find the following product: \[\frac{4}{3}a( a^2 + b^2 - 3 c^2 )\]
Simplify: 2x2(x3 − x) − 3x(x4 + 2x) − 2(x4 − 3x2)
Multiply:
(7x + y) by (x + 5y)
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Simplify:
(5 − x)(6 − 5x)( 2 − x)
Simplify:
(2x2 + 3x − 5)(3x2 − 5x + 4)
Solve the following equation.
6x − 1 = 3x + 8
Solve:
(3x + 2y)(7x − 8y)