Advertisements
Advertisements
Question
Find each of the following product:
(2.3xy) × (0.1x) × (0.16)
Solution
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\]
We have:
\[\left( 2 . 3xy \right) \times \left( 0 . 1x \right) \times \left( 0 . 16 \right)\]
\[ = \left( 2 . 3 \times 0 . 1 \times 0 . 16 \right) \times \left( x \times x \right) \times y\]
\[ = \left( 2 . 3 \times 0 . 1 \times 0 . 16 \right) \times \left( x^{1 + 1} \right) \times y\]
\[ = 0 . 0368 x^2 y\]
Thus, the answer is \[0 . 0368 x^2 y\].
APPEARS IN
RELATED QUESTIONS
Express each of the following product as a monomials and verify the result in each case for x = 1:
(3x) × (4x) × (−5x)
Evaluate (3.2x6y3) × (2.1x2y2) when x = 1 and y = 0.5.
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
Simplify: 3a2 + 2(a + 2) − 3a(2a + 1)
Simplify: x(x + 4) + 3x(2x2 − 1) + 4x2 + 4
Simplify: a(b − c) + b(c − a) + c(a − b)
Multiply:
(0.8a − 0.5b) by (1.5a − 3b)
Multiply:
(2x2 − 1) by (4x3 + 5x2)
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Solve:
(3x + 2y)(7x − 8y)