Advertisements
Advertisements
प्रश्न
Find each of the following product:
(2.3xy) × (0.1x) × (0.16)
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\]
We have:
\[\left( 2 . 3xy \right) \times \left( 0 . 1x \right) \times \left( 0 . 16 \right)\]
\[ = \left( 2 . 3 \times 0 . 1 \times 0 . 16 \right) \times \left( x \times x \right) \times y\]
\[ = \left( 2 . 3 \times 0 . 1 \times 0 . 16 \right) \times \left( x^{1 + 1} \right) \times y\]
\[ = 0 . 0368 x^2 y\]
Thus, the answer is \[0 . 0368 x^2 y\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
Find the following product:
−5a(7a − 2b)
Find the following product:
0.1y(0.1x5 + 0.1y)
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
Multiply:
(5x + 3) by (7x + 2)
Multiply:
(a − 1) by (0.1a2 + 3)
Multiply:
(x2 + y2) by (3a + 2b)
(2xy + 3y2) (3y2 − 2)
Simplify:
x2(x − y) y2(x + 2y)
Simplify:
(2x2 + 3x − 5)(3x2 − 5x + 4)