Advertisements
Advertisements
Question
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
Solution
To find the product, we will use distributive law as follows:
\[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
\[ = \frac{7}{5} x^2 y \times \frac{3}{5}x y^2 + \frac{7}{5} x^2 y \times \frac{2}{5}x\]
\[ = \frac{21}{25} x^{2 + 1} y^{1 + 2} + \frac{14}{25} x^{2 + 1} y\]
\[ = \frac{21}{25} x^3 y^3 + \frac{14}{25} x^3 y\]
Thus, the answer is \[\frac{21}{25} x^3 y^3 + \frac{14}{25} x^3 y\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Find the following product:
−5a(7a − 2b)
Find the following product:
0.1y(0.1x5 + 0.1y)
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
Simplify: a(b − c) − b(c − a) − c(a − b)
Simplify: a(b − c) + b(c − a) + c(a − b)
Simplify:
x2(x − y) y2(x + 2y)
Simplify:
(3x − 2)(2x − 3) + (5x − 3)(x + 1)
Solve the following equation.
2(x − 4) = 4x + 2