Advertisements
Advertisements
Question
Find each of the following product:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2\]
Solution
To multiply algebraic expressions, we use commutative and associative laws along with the the law of indices, that is, \[a^m \times a^n = a^{m + n}\].
We have:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2 \]
\[ = \left( \frac{1}{4} \times \frac{2}{3} \right) \times \left( x \times x^2 \right) \times \left( y \times y \right) \times z^2 \]
\[ = \left( \frac{1}{4} \times \frac{2}{3} \right) \times \left( x^{1 + 2} \right) \times \left( y^{1 + 1} \right) \times z^2 \]
\[ = \frac{1}{6} x^3 y^2 z^2\]
Thus, the answer is \[\frac{1}{6} x^3 y^2 z^2\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
\[\left( - \frac{7}{5}x y^2 z \right) \times \left( \frac{13}{3} x^2 y z^2 \right)\]
Find each of the following product: \[( - 7xy) \times \left( \frac{1}{4} x^2 yz \right)\]
Find each of the following product:
(−4x2) × (−6xy2) × (−3yz2)
Find each of the following product: \[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(x2)3 × (2x) × (−4x) × (5)
Evaluate (−8x2y6) × (−20xy) for x = 2.5 and y = 1.
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Simplify:
(3x + 2y)(4x + 3y) − (2x − y)(7x − 3y)
Solve:
(3x + 2y)(7x − 8y)