Advertisements
Advertisements
Question
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Solution
To multiply, we will use distributive law as follows:
\[\left( 3x - 5y \right)\left( x + y \right)\]
\[ = 3x\left( x + y \right) - 5y\left( x + y \right)\]
\[ = 3 x^2 + 3xy - 5xy - 5 y^2 \]
\[ = 3 x^2 - 2xy - 5 y^2\]
\[\therefore\] \[\left( 3x - 5y \right)\left( x + y \right) = 3 x^2 - 2xy - 5 y^2\].
Now, we put x = \[-\] 1 and y = \[-\] 2 on both sides to verify the result.
\[\text { LHS } = \left( 3x - 5y \right)\left( x + y \right)\]
\[ = \left\{ 3\left( - 1 \right) - 5\left( - 2 \right) \right\}\left\{ - 1 + \left( - 2 \right) \right\}\]
\[ = \left( - 3 + 10 \right)\left( - 3 \right)\]
\[ = \left( 7 \right)\left( - 3 \right)\]
\[ = - 21\]
\[\text { RHS } = 3 x^2 - 2xy - 5 y^2 \]
\[ = 3 \left( - 1 \right)^2 - 2\left( - 1 \right)\left( - 2 \right) - 5 \left( - 2 \right)^2 \]
\[ = 3 \times 1 - 4 - 5 \times 4\]
\[ = 3 - 4 - 20\]
\[ = - 21\]
Because LHS is equal to RHS, the result is verified.
Thus, the answer is \[3 x^2 - 2xy - 5 y^2\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
Simplify:
a2b2(a + 2b)(3a + b)
Simplify:
(3x − 2)(2x − 3) + (5x − 3)(x + 1)
Simplify:
(3x + 2y)(4x + 3y) − (2x − y)(7x − 3y)
Simplify:
(x2 − 3x + 2)(5x − 2) − (3x2 + 4x − 5)(2x − 1)
Show that: (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0
Multiply:
16xy × 18xy
Solve the following equation.
6x − 1 = 3x + 8
Solve the following equation.
2(x − 4) = 4x + 2
Solve:
(3x + 2y)(7x − 8y)