Advertisements
Advertisements
प्रश्न
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
उत्तर
To multiply, we will use distributive law as follows:
\[\left( 3x - 5y \right)\left( x + y \right)\]
\[ = 3x\left( x + y \right) - 5y\left( x + y \right)\]
\[ = 3 x^2 + 3xy - 5xy - 5 y^2 \]
\[ = 3 x^2 - 2xy - 5 y^2\]
\[\therefore\] \[\left( 3x - 5y \right)\left( x + y \right) = 3 x^2 - 2xy - 5 y^2\].
Now, we put x = \[-\] 1 and y = \[-\] 2 on both sides to verify the result.
\[\text { LHS } = \left( 3x - 5y \right)\left( x + y \right)\]
\[ = \left\{ 3\left( - 1 \right) - 5\left( - 2 \right) \right\}\left\{ - 1 + \left( - 2 \right) \right\}\]
\[ = \left( - 3 + 10 \right)\left( - 3 \right)\]
\[ = \left( 7 \right)\left( - 3 \right)\]
\[ = - 21\]
\[\text { RHS } = 3 x^2 - 2xy - 5 y^2 \]
\[ = 3 \left( - 1 \right)^2 - 2\left( - 1 \right)\left( - 2 \right) - 5 \left( - 2 \right)^2 \]
\[ = 3 \times 1 - 4 - 5 \times 4\]
\[ = 3 - 4 - 20\]
\[ = - 21\]
Because LHS is equal to RHS, the result is verified.
Thus, the answer is \[3 x^2 - 2xy - 5 y^2\].
APPEARS IN
संबंधित प्रश्न
Find the value of (5x6) × (−1.5x2y3) × (−12xy2) when x = 1, y = 0.5.
Evaluate (−8x2y6) × (−20xy) for x = 2.5 and y = 1.
Find the following product:
−5a(7a − 2b)
Find the following product: \[\frac{6x}{5}( x^3 + y^3 )\]
Find the product −3y(xy + y2) and find its value for x = 4 and y = 5.
Simplify: a2b(a3 − a + 1) − ab(a4 − 2a2 + 2a) − b (a3 − a2 − 1)
Simplify:
(5x + 3)(x − 1)(3x − 2)
Simplify:
(5 − x)(6 − 5x)( 2 − x)
Simplify:
(3x − 2)(2x − 3) + (5x − 3)(x + 1)
Simplify : (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)