Advertisements
Advertisements
प्रश्न
Find the value of (5x6) × (−1.5x2y3) × (−12xy2) when x = 1, y = 0.5.
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( 5 x^6 \right) \times \left( - 1 . 5 x^2 y^3 \right) \times \left( - 12x y^2 \right)\]
\[ = \left\{ 5 \times \left( - 1 . 5 \right) \times \left( - 12 \right) \right\} \times \left( x^6 \times x^2 \times x \right) \times \left( y^3 \times y^2 \right)\]
\[ = \left\{ 5 \times \left( - 1 . 5 \right) \times \left( - 12 \right) \right\} \times \left( x^{6 + 2 + 1} \right) \times \left( y^{3 + 2} \right)\]
\[ = 90 x^9 y^5 \]
\[\therefore\] \[\left( 5 x^6 \right) \times \left( - 1 . 5 x^2 y^3 \right) \times \left( - 12x y^2 \right) = 90 x^9 y^5\]
Substituting x = 1 and y = 0.5 in the result, we get:
\[90 x^9 y^5 \]
\[ = 90 \left( 1 \right)^9 \left( 0 . 5 \right)^5 \]
\[ = 90 \times 1 \times 0 . 03125\]
\[ = 2 . 8125\]
Thus, the answer is 2.8125.
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(−5xy) × (−3x2yz)
Find each of the following product:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
Evaluate (2.3a5b2) × (1.2a2b2) when a = 1 and b = 0.5.
Find the product −3y(xy + y2) and find its value for x = 4 and y = 5.
Simplify: 2x2(x3 − x) − 3x(x4 + 2x) − 2(x4 − 3x2)
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Simplify:
(2x2 + 3x − 5)(3x2 − 5x + 4)
Multiply:
23xy2 × 4yz2
Solve the following equation.
6x − 1 = 3x + 8