Advertisements
Advertisements
Question
Find the value of (5x6) × (−1.5x2y3) × (−12xy2) when x = 1, y = 0.5.
Solution
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( 5 x^6 \right) \times \left( - 1 . 5 x^2 y^3 \right) \times \left( - 12x y^2 \right)\]
\[ = \left\{ 5 \times \left( - 1 . 5 \right) \times \left( - 12 \right) \right\} \times \left( x^6 \times x^2 \times x \right) \times \left( y^3 \times y^2 \right)\]
\[ = \left\{ 5 \times \left( - 1 . 5 \right) \times \left( - 12 \right) \right\} \times \left( x^{6 + 2 + 1} \right) \times \left( y^{3 + 2} \right)\]
\[ = 90 x^9 y^5 \]
\[\therefore\] \[\left( 5 x^6 \right) \times \left( - 1 . 5 x^2 y^3 \right) \times \left( - 12x y^2 \right) = 90 x^9 y^5\]
Substituting x = 1 and y = 0.5 in the result, we get:
\[90 x^9 y^5 \]
\[ = 90 \left( 1 \right)^9 \left( 0 . 5 \right)^5 \]
\[ = 90 \times 1 \times 0 . 03125\]
\[ = 2 . 8125\]
Thus, the answer is 2.8125.
APPEARS IN
RELATED QUESTIONS
Express each of the following product as a monomials and verify the result in each case for x = 1:
(x2)3 × (2x) × (−4x) × (5)
Find the following product:
−11a(3a + 2b)
Simplify: a(b − c) + b(c − a) + c(a − b)
Simplify: a2(2a − 1) + 3a + a3 − 8
Multiply:
(0.8a − 0.5b) by (1.5a − 3b)
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Simplify:
(2x2 + 3x − 5)(3x2 − 5x + 4)
Multiply:
23xy2 × 4yz2
Solve the following equation.
6x − 1 = 3x + 8
Solve:
(3x + 2y)(7x − 8y)