English

Evaluate (2.3a5b2) × (1.2a2b2) when a = 1 and b = 0.5. - Mathematics

Advertisements
Advertisements

Question

Evaluate (2.3a5b2) × (1.2a2b2) when a = 1 and b = 0.5.

Sum

Solution

To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e.,​ \[a^m \times a^n = a^{m + n}\]

We have:

\[\left( 2 . 3 a^5 b^2 \right) \times \left( 1 . 2 a^2 b^2 \right)\]

\[ = \left( 2 . 3 \times 1 . 2 \right) \times \left( a^5 \times a^2 \right) \times \left( b^2 \times b^2 \right)\]

\[ = \left( 2 . 3 \times 1 . 2 \right) \times \left( a^{5 + 2} \right) \times \left( b^{2 + 2} \right)\]

\[ = 2 . 76 a^7 b^4\]

\[\therefore\] \[\left( 2 . 3 a^5 b^2 \right) \times \left( 1 . 2 a^2 b^2 \right) = 2 . 76 a^7 b^4\]

Substituting a =1 and b = 0.5 in the result, we get:

\[2 . 76 a^7 b^4 \]

\[ = 2 . 76 \left( 1 \right)^7 \left( 0 . 5 \right)^4 \]

\[ = 2 . 76 \times 1 \times 0 . 0625\]

\[ = 0 . 1725\]

Thus, the answer is \[0 . 1725\].

shaalaa.com
Multiplication of Algebraic Expressions
  Is there an error in this question or solution?
Chapter 6: Algebraic Expressions and Identities - Exercise 6.3 [Page 14]

APPEARS IN

RD Sharma Mathematics [English] Class 8
Chapter 6 Algebraic Expressions and Identities
Exercise 6.3 | Q 25 | Page 14
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×