Advertisements
Advertisements
Question
Express each of the following product as a monomials and verify the result in each case for x = 1:
(5x4) × (x2)3 × (2x)2
Solution
We have to find the product of the expression in order to express it as a monomial.
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n} \text { and } \left( a^m \right)^n = a^{mn}\]
We have:
\[\left( 5 x^4 \right) \times \left( x^2 \right)^3 \times \left( 2x \right)^2 \]
\[ = \left( 5 x^4 \right) \times \left( x^6 \right) \times \left( 2^2 \times x^2 \right)\]
\[ = \left( 5 \times 2^2 \right) \times \left( x^4 \times x^6 \times x^2 \right)\]
\[ = \left( 5 \times 2^2 \right) \times \left( x^{4 + 6 + 2} \right)\]
\[ = 20 x^{12} \]
\[\therefore\] \[\left( 5 x^4 \right) \times \left( x^2 \right)^3 \times \left( 2x \right)^2 = 20 x^{12} \]
Substituting x = 1 in LHS, we get:
\[\text { LHS } = \left( 5 x^4 \right) \times \left( x^2 \right)^3 \times \left( 2x \right)^2 \]
\[ = \left( 5 \times 1^4 \right) \times \left( 1^2 \right)^3 \times \left( 2 \times 1 \right)^2 \]
\[ = \left( 5 \times 1 \right) \times \left( 1^6 \right) \times \left( 2 \right)^2 \]
\[ = 5 \times 1 \times 4\]
\[ = 20\]
Put x =1 in RHS, we get:
\[RHS = 20 x^{12} \]
\[ = 20 \times \left( 1 \right)^{12} \]
\[ = 20 \times 1\]
\[ = 20\]
\[\because\] LHS = RHS for x = 1; therefore, the result is correct.
Thus, the answer is \[20 x^{12}\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Find each of the following product:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(3x) × (4x) × (−5x)
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
Simplify:
x2(x + 2y) (x − 3y)
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Simplify:
(3x − 2)(2x − 3) + (5x − 3)(x + 1)
Show that: \[\left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]
Solve the following equation.
2(x − 4) = 4x + 2