Advertisements
Advertisements
Question
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Solution
We have to find the product of the expression in order to express it as a monomial.
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( 4 x^2 \right) \times \left( - 3x \right) \times \left( \frac{4}{5} x^3 \right)\]
\[ = \left\{ 4 \times \left( - 3 \right) \times \frac{4}{5} \right\} \times \left( x^2 \times x \times x^3 \right)\]
\[ = \left\{ 4 \times \left( - 3 \right) \times \frac{4}{5} \right\} \times \left( x^{2 + 1 + 3} \right)\]
\[ = - \frac{48}{5} x^6\]
\[\therefore\] \[\left( 4 x^2 \right) \times \left( - 3x \right) \times \left( \frac{4}{5} x^3 \right) = - \frac{48}{5} x^6\]
Substituting x = 1 in LHS, we get:
\[\text { LHS } = \left( 4 x^2 \right) \times \left( - 3x \right) \times \left( \frac{4}{5} x^3 \right)\]
\[ = \left( 4 \times 1^2 \right) \times \left( - 3 \times 1 \right) \times \left( \frac{4}{5} \times 1^3 \right)\]
\[ = 4 \times \left( - 3 \right) \times \frac{4}{5}\]
\[ = - \frac{48}{5}\]
Putting x = 1 in RHS, we get:
\[\text { RHS } = - \frac{48}{5} x^6 \]
\[ = - \frac{48}{5} \times 1^6 \]
\[ = - \frac{48}{5}\]
\[\because\] LHS = RHS for x = 1; therefore, the result is correct
Thus, the answer is \[- \frac{48}{5} x^6\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
\[\left( - \frac{7}{5}x y^2 z \right) \times \left( \frac{13}{3} x^2 y z^2 \right)\]
Find the following product:
−11y2(3y + 7)
Simplify: a(b − c) + b(c − a) + c(a − b)
Simplify: a2(2a − 1) + 3a + a3 − 8
Simplify:
(x2 − 2y2) (x + 4y) x2y2
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Simplify:
(3x + 2y)(4x + 3y) − (2x − y)(7x − 3y)
Simplify : (m2 − n2m)2 + 2m3n2
Solve the following equation.
6x − 1 = 3x + 8
Solve the following equation.
5(x + 1) = 74