Advertisements
Advertisements
Question
Find the following product:
−11y2(3y + 7)
Solution
To find the product, we will use distributive law as follows:
\[- 11 y^2 \left( 3y + 7 \right)\]
\[ = \left( - 11 y^2 \right) \times 3y + \left( - 11 y^2 \right) \times 7\]
\[ = \left( - 11 \times 3 \right)\left( y^2 \times y \right) + \left( - 11 \times 7 \right) \times \left( y^2 \right)\]
\[ = \left( - 33 \right)\left( y^{2 + 1} \right) + \left( - 77 \right) \times \left( y^2 \right)\]
\[ = - 33 y^3 - 77 y^2\]
Thus, the answer is \[- 33 y^3 - 77 y^2\] .
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
(−5xy) × (−3x2yz)
Find each of the following product:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2\]
Find each of the following product:
(7ab) × (−5ab2c) × (6abc2)
Express each of the following product as a monomials and verify the result in each case for x = 1:
(x2)3 × (2x) × (−4x) × (5)
Simplify: x3y(x2 − 2x) + 2xy(x3 − x4)
Simplify: a(b − c) + b(c − a) + c(a − b)
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
Simplify : (4m − 8n)2 + (7m + 8n)2
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2
Multiply:
23xy2 × 4yz2