Advertisements
Advertisements
Question
Find each of the following product:
(7ab) × (−5ab2c) × (6abc2)
Solution
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e.,
\[a^m \times a^n = a^{m + n}\]
We have:
\[\left( 7ab \right) \times \left( - 5a b^2 c \right) \times \left( 6ab c^2 \right)\]
\[ = \left\{ 7 \times \left( - 5 \right) \times 6 \right\} \times \left( a \times a \times a \right) \times \left( b \times b^2 \times b \right) \times \left( c \times c^2 \right)\]
\[ = \left\{ 7 \times \left( - 5 \right) \times 6 \right\} \times \left( a^{1 + 1 + 1} \right) \times \left( b^{1 + 2 + 1} \right) \times \left( c^{1 + 2} \right)\]
\[ = - 210 a^3 b^4 c^3\]
Thus, the answer is \[- 210 a^3 b^4 c^3\] .
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Find the following product:
−11y2(3y + 7)
xy(x3 − y3)
Find the following product:
1.5x(10x2y − 100xy2)
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Multiply:
(2x + 8) by (x − 3)
Simplify:
(x2 − 2y2) (x + 4y) x2y2
Simplify:
(x2 − 3x + 2)(5x − 2) − (3x2 + 4x − 5)(2x − 1)
Simplify : (m2 − n2m)2 + 2m3n2
Solve the following equation.
6x − 1 = 3x + 8