Advertisements
Advertisements
प्रश्न
Find each of the following product:
(7ab) × (−5ab2c) × (6abc2)
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e.,
\[a^m \times a^n = a^{m + n}\]
We have:
\[\left( 7ab \right) \times \left( - 5a b^2 c \right) \times \left( 6ab c^2 \right)\]
\[ = \left\{ 7 \times \left( - 5 \right) \times 6 \right\} \times \left( a \times a \times a \right) \times \left( b \times b^2 \times b \right) \times \left( c \times c^2 \right)\]
\[ = \left\{ 7 \times \left( - 5 \right) \times 6 \right\} \times \left( a^{1 + 1 + 1} \right) \times \left( b^{1 + 2 + 1} \right) \times \left( c^{1 + 2} \right)\]
\[ = - 210 a^3 b^4 c^3\]
Thus, the answer is \[- 210 a^3 b^4 c^3\] .
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
Find each of the following product: \[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
Find the following product: \[- \frac{4}{27}xyz\left( \frac{9}{2} x^2 yz - \frac{3}{4}xy z^2 \right)\]
Simplify: a2(2a − 1) + 3a + a3 − 8
Simplify: a2b(a3 − a + 1) − ab(a4 − 2a2 + 2a) − b (a3 − a2 − 1)
Multiply:
(x2 + y2) by (3a + 2b)
Multiply:
[−3d + (−7f)] by (5d + f)
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Simplify : (2.5p − 1.5q)2 − (1.5p − 2.5q)2
Show that: (9a − 5b)2 + 180ab = (9a + 5b)2