Advertisements
Advertisements
प्रश्न
Find each of the following product:
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e.,
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
\[ = \left( - \frac{1}{27} \times \frac{9}{2} \right) \times \left( a^2 \times a^3 \right) \times \left( b^2 \times b^2 \right) \times c^2 \]
\[ = \left( - \frac{1}{27} \times \frac{9}{2} \right) \times \left( a^{2 + 3} \right) \times \left( b^{2 + 2} \right) \times c^2 \]
\[ = - \frac{1}{6} a^5 b^4 c^2\]
Thus, the answer is \[- \frac{1}{6} a^5 b^4 c^2\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2\]
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
Evaluate (3.2x6y3) × (2.1x2y2) when x = 1 and y = 0.5.
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Multiply \[- \frac{3}{2} x^2 y^3 by (2x - y)\] and verify the answer for x = 1 and y = 2.
Simplify: x3y(x2 − 2x) + 2xy(x3 − x4)
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Simplify : (x − y)(x + y) (x2 + y2)(x4 + y2)
Multiply:
(4x + 5y) × (9x + 7y)