Advertisements
Advertisements
प्रश्न
Find each of the following product:
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e.,
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
\[ = \left( - \frac{1}{27} \times \frac{9}{2} \right) \times \left( a^2 \times a^3 \right) \times \left( b^2 \times b^2 \right) \times c^2 \]
\[ = \left( - \frac{1}{27} \times \frac{9}{2} \right) \times \left( a^{2 + 3} \right) \times \left( b^{2 + 2} \right) \times c^2 \]
\[ = - \frac{1}{6} a^5 b^4 c^2\]
Thus, the answer is \[- \frac{1}{6} a^5 b^4 c^2\].
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Find the following product: \[\frac{6x}{5}( x^3 + y^3 )\]
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
Simplify: x3y(x2 − 2x) + 2xy(x3 − x4)
Multiply:
(3x2 + y2) by (2x2 + 3y2)
Multiply:
(2x2y2 − 5xy2) by (x2 − y2)
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
Simplify:
(x2 − 2y2) (x + 4y) x2y2
Simplify:
(x2 − 3x + 2)(5x − 2) − (3x2 + 4x − 5)(2x − 1)
Multiply:
23xy2 × 4yz2