Advertisements
Advertisements
Question
Find each of the following product:
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
Solution
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e.,
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
\[ = \left( - \frac{1}{27} \times \frac{9}{2} \right) \times \left( a^2 \times a^3 \right) \times \left( b^2 \times b^2 \right) \times c^2 \]
\[ = \left( - \frac{1}{27} \times \frac{9}{2} \right) \times \left( a^{2 + 3} \right) \times \left( b^{2 + 2} \right) \times c^2 \]
\[ = - \frac{1}{6} a^5 b^4 c^2\]
Thus, the answer is \[- \frac{1}{6} a^5 b^4 c^2\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
Find each of the following product:
(2.3xy) × (0.1x) × (0.16)
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
Find the following product:
1.5x(10x2y − 100xy2)
Find the following product:
250.5xy \[\left( xz + \frac{y}{10} \right)\]
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Multiply:
(x6 − y6) by (x2 + y2)
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
Solve the following equation.
5(x + 1) = 74