Advertisements
Advertisements
Question
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
Solution
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( - \frac{24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
\[ = \left\{ \left( - \frac{24}{25} \right) \times \left( - \frac{15}{16} \right) \right\} \times \left( x^3 \times x \right) \times \left( z \times z^2 \right) \times y\]
\[ = \left\{ \left( - \frac{24}{25} \right) \times \left( - \frac{15}{16} \right) \right\} \times \left( x^{3 + 1} \right) \times \left( z^{1 + 2} \right) \times y\]
\[= \frac{9}{10} x^4 y z^3\]
Thus, the answer is \[\frac{9}{10} x^4 y z^3\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
Find each of the following product: \[( - 7xy) \times \left( \frac{1}{4} x^2 yz \right)\]
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Find the following product:
−5a(7a − 2b)
Simplify: a2(2a − 1) + 3a + a3 − 8
Multiply:
(7x + y) by (x + 5y)
Multiply:
(x6 − y6) by (x2 + y2)
Simplify:
(5x + 3)(x − 1)(3x − 2)
Simplify:
(3x + 2y)(4x + 3y) − (2x − y)(7x − 3y)