Advertisements
Advertisements
Question
Simplify:
(5x + 3)(x − 1)(3x − 2)
Solution
To simplify, we will proceed as follows:
\[\left( 5x + 3 \right)\left( x - 1 \right)\left( 3x - 2 \right)\]
\[ = \left[ \left( 5x + 3 \right)\left( x - 1 \right) \right]\left( 3x - 2 \right)\]
\[= \left[ 5x\left( x - 1 \right) + 3\left( x - 1 \right) \right]\left( 3x - 2 \right)\] (Distributive law)
\[= \left[ 5 x^2 - 5x + 3x - 3 \right]\left( 3x - 2 \right)\]
\[ = \left[ 5 x^2 - 2x - 3 \right]\left( 3x - 2 \right)\]
\[ = 3x\left( 5 x^2 - 2x - 3 \right) - 2\left( 5 x^2 - 2x - 3 \right)\]
\[ = 15 x^3 - 6 x^2 - 9x - \left[ 10 x^2 - 4x - 6 \right]\]
\[ = 15 x^3 - 6 x^2 - 9x - 10 x^2 + 4x + 6\]
\[= 15 x^3 - 6 x^2 - 10 x^2 - 9x + 4x + 6\] (Rearranging)
\[= 15 x^3 - 16 x^2 - 5x + 6\] (Combining like terms)
Thus, the answer is \[15 x^3 - 16 x^2 - 5x + 6\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
Find each of the following product:
(7ab) × (−5ab2c) × (6abc2)
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
Evaluate (2.3a5b2) × (1.2a2b2) when a = 1 and b = 0.5.
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
Find the following product: \[\frac{4}{3}a( a^2 + b^2 - 3 c^2 )\]
Simplify: x3y(x2 − 2x) + 2xy(x3 − x4)
Multiply:
(x2 + y2) by (3a + 2b)
(2xy + 3y2) (3y2 − 2)
Multiply:
(4x + 5y) × (9x + 7y)