Advertisements
Advertisements
Question
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
Solution
To find the product, we will use distributive law as follows:
\[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)\left( - 50 a^2 b^2 c^2 \right)\]
\[ = \left\{ \left( - \frac{7}{4}a b^2 c \right)\left( - 50 a^2 b^2 c^2 \right) \right\} - \left\{ \left( \frac{6}{25} a^2 c^2 \right)\left( - 50 a^2 b^2 c^2 \right) \right\}\]
\[ = \left\{ \left\{ - \frac{7}{4} \times \left( - 50 \right) \right\}\left( a \times a^2 \right) \times \left( b^2 \times b^2 \right) \times \left( c \times c^2 \right) \right\} - \left\{ \left( \frac{6}{25} \right)\left( - 50 \right)\left( a^2 \times a^2 \right) \times \left( b^2 \right) \times \left( c^2 \times c^2 \right) \right\}\]
\[ = \left\{ - \frac{7}{4} \times \left( - 50 \right) \right\}\left( a^{1 + 2} b^{2 + 2} c^{1 + 2} \right) - \left\{ \left( \frac{6}{25} \right)\left( - 50 \right)\left( a^{2 + 2} b^2 c^{2 + 2} \right) \right\}\]
\[ = \frac{175}{2} a^3 b^4 c^3 - \left( - 12 a^4 b^2 c^4 \right)\]
\[ = \frac{175}{2} a^3 b^4 c^3 + 12 a^4 b^2 c^4\]
Thus, the answer is \[\frac{175}{2} a^3 b^4 c^3 + 12 a^4 b^2 c^4\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
(2.3xy) × (0.1x) × (0.16)
Find the product −3y(xy + y2) and find its value for x = 4 and y = 5.
Multiply \[- \frac{3}{2} x^2 y^3 by (2x - y)\] and verify the answer for x = 1 and y = 2.
Simplify: 3a2 + 2(a + 2) − 3a(2a + 1)
Simplify: x2(x2 + 1) − x3(x + 1) − x(x3 − x)
Simplify: a2(2a − 1) + 3a + a3 − 8
Multiply:
(2x + 8) by (x − 3)
Multiply:
(7x + y) by (x + 5y)
Multiply:
(0.8a − 0.5b) by (1.5a − 3b)
Simplify:
(x2 − 3x + 2)(5x − 2) − (3x2 + 4x − 5)(2x − 1)