Advertisements
Advertisements
Question
Multiply \[- \frac{3}{2} x^2 y^3 by (2x - y)\] and verify the answer for x = 1 and y = 2.
Solution
To find the product, we will use distributive law as follows:
\[- \frac{3}{2} x^2 y^3 \times \left( 2x - y \right)\]
\[ = \left( - \frac{3}{2} x^2 y^3 \times 2x \right) - \left( - \frac{3}{2} x^2 y^3 \times y \right)\]
\[ = \left( - 3 x^{2 + 1} y^3 \right) - \left( - \frac{3}{2} x^2 y^{3 + 1} \right)\]
\[ = - 3 x^3 y^3 + \frac{3}{2} x^2 y^4\]
Substituting x = 1 and y = 2 in the result, we get:
\[- 3 x^3 y^3 + \frac{3}{2} x^2 y^4 \]
\[ = - 3 \left( 1 \right)^3 \left( 2 \right)^3 + \frac{3}{2} \left( 1 \right)^2 \left( 2 \right)^4 \]
\[ = - 3 \times 1 \times 8 + \frac{3}{2} \times 1 \times 16\]
\[ = - 24 + 24\]
\[ = 0\]
Thus, the product is \[- 3 x^3 y^3 + \frac{3}{2} x^2 y^4\],and its value for x = 1 and y = 2 is 0.
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
(−4x2) × (−6xy2) × (−3yz2)
Find the following product:
0.1y(0.1x5 + 0.1y)
Find the following product:
250.5xy \[\left( xz + \frac{y}{10} \right)\]
Simplify: 2x2(x3 − x) − 3x(x4 + 2x) − 2(x4 − 3x2)
Simplify: 2a2 + 3a(1 − 2a3) + a(a + 1)
Multiply:
(x6 − y6) by (x2 + y2)
Simplify:
a2b2(a + 2b)(3a + b)
Simplify:
(5x + 3)(x − 1)(3x − 2)
Simplify : (4m − 8n)2 + (7m + 8n)2
Simplify : (m2 − n2m)2 + 2m3n2