Advertisements
Advertisements
Question
Find the following product:
0.1y(0.1x5 + 0.1y)
Solution
To find the product, we will use distributive law as follows:
\[0 . 1y\left( 0 . 1 x^5 + 0 . 1y \right)\]
\[ = \left( 0 . 1y \right)\left( 0 . 1 x^5 \right) + \left( 0 . 1y \right)\left( 0 . 1y \right)\]
\[ = \left( 0 . 1 \times 0 . 1 \right)\left( y \times x^5 \right) + \left( 0 . 1 \times 0 . 1 \right)\left( y \times y \right)\]
\[ = \left( 0 . 1 \times 0 . 1 \right)\left( x^5 \times y \right) + \left( 0 . 1 \times 0 . 1 \right)\left( y^{1 + 1} \right)\]
\[ = 0 . 01 x^5 y + 0 . 01 y^2\]
Thus, the answer is \[0 . 01 x^5 y + 0 . 01 y^2\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
(−5xy) × (−3x2yz)
Find each of the following product: \[( - 7xy) \times \left( \frac{1}{4} x^2 yz \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(x2)3 × (2x) × (−4x) × (5)
Evaluate (2.3a5b2) × (1.2a2b2) when a = 1 and b = 0.5.
Simplify: x3y(x2 − 2x) + 2xy(x3 − x4)
Multiply:
(2x + 8) by (x − 3)
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Simplify:
(5x + 3)(x − 1)(3x − 2)
Simplify:
(2x2 + 3x − 5)(3x2 − 5x + 4)
Multiply:
16xy × 18xy