Advertisements
Advertisements
Question
Simplify:
(2x2 + 3x − 5)(3x2 − 5x + 4)
Solution
To simplify, we will proceed as follows:
\[\left( 2 x^2 + 3x - 5 \right)\left( 3 x^2 - 5x + 4 \right)\]
\[= 2 x^2 \left( 3 x^2 - 5x + 4 \right) + 3x\left( 3 x^2 - 5x + 4 \right) - 5\left( 3 x^2 - 5x + 4 \right)\] (Distributive law)
\[= 6 x^4 - 10 x^3 + 8 x^2 + 9 x^3 - 15 x^2 + 12x - 15 x^2 + 25x - 20\]
\[= 6 x^4 - 10 x^3 + 9 x^3 + 8 x^2 - 15 x^2 - 15 x^2 + 12x + 25x - 20\] (Rearranging)
\[= 6 x^4 - x^3 - 22 x^2 + 36x - 20\] (Combining like terms)
Thus, the answer is \[6 x^4 - x^3 - 22 x^2 + 36x - 20\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
(2.3xy) × (0.1x) × (0.16)
Find the following product: \[- \frac{4}{27}xyz\left( \frac{9}{2} x^2 yz - \frac{3}{4}xy z^2 \right)\]
Find the following product: \[\frac{4}{3}a( a^2 + b^2 - 3 c^2 )\]
Simplify: a2b(a3 − a + 1) − ab(a4 − 2a2 + 2a) − b (a3 − a2 − 1)
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Multiply:
(2x2 − 1) by (4x3 + 5x2)
Simplify:
(x3 − 2x2 + 3x − 4) (x −1) − (2x − 3)(x2 − x + 1)
Simplify : (4m − 8n)2 + (7m + 8n)2
Show that: \[\left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]
Solve the following equation.
5(x + 1) = 74