Advertisements
Advertisements
Question
Simplify:
(x3 − 2x2 + 3x − 4) (x −1) − (2x − 3)(x2 − x + 1)
Solution
To simplify,we will proceed as follows:
\[\left( x^3 - 2 x^2 + 3x - 4 \right)\left( x - 1 \right) - \left( 2x - 3 \right)\left( x^2 - x + 1 \right)\]
\[ = \left[ \left( x^3 - 2 x^2 + 3x - 4 \right)\left( x - 1 \right) \right] - \left[ \left( 2x - 3 \right)\left( x^2 - x + 1 \right) \right]\]
\[= \left[ x\left( x^3 - 2 x^2 + 3x - 4 \right) - 1\left( x^3 - 2 x^2 + 3x - 4 \right) \right] - \left[ 2x\left( x^2 - x + 1 \right) - 3\left( x^2 - x + 1 \right) \right]\] (Distributive law)
\[= \left[ x\left( x^3 - 2 x^2 + 3x - 4 \right) - 1\left( x^3 - 2 x^2 + 3x - 4 \right) \right] - \left[ 2x\left( x^2 - x + 1 \right) - 3\left( x^2 - x + 1 \right) \right]\]
\[ = x^4 - 2 x^3 + 3 x^2 - 4x - x^3 + 2 x^2 - 3x + 4 - \left[ 2 x^3 - 2 x^2 + 2x - 3 x^2 + 3x - 3 \right]\]
\[ = x^4 - 2 x^3 + 3 x^2 - 4x - x^3 + 2 x^2 - 3x + 4 - 2 x^3 + 2 x^2 - 2x + 3 x^2 - 3x + 3\]
\[= x^4 - 2 x^3 - 2 x^3 - x^3 + 3 x^2 + 2 x^2 + 2 x^2 + 3 x^2 - 4x - 3x - 2x - 3x + 4 + 3\]
(Rearranging)
\[= x^4 - 5 x^3 + 10 x^2 - 12x + 7\] (Combining like terms)
Thus, the answer is \[x^4 - 5 x^3 + 10 x^2 - 12x + 7\].
APPEARS IN
RELATED QUESTIONS
Express each of the following product as a monomials and verify the result in each case for x = 1:
(3x) × (4x) × (−5x)
Find the following product:
−5a(7a − 2b)
xy(x3 − y3)
Simplify: x3y(x2 − 2x) + 2xy(x3 − x4)
Simplify: a2b(a3 − a + 1) − ab(a4 − 2a2 + 2a) − b (a3 − a2 − 1)
Multiply:
(x6 − y6) by (x2 + y2)
Simplify:
x2(x − y) y2(x + 2y)
Simplify:
(3x − 2)(2x − 3) + (5x − 3)(x + 1)
Simplify:
(x2 − 3x + 2)(5x − 2) − (3x2 + 4x − 5)(2x − 1)
Multiply:
23xy2 × 4yz2