Advertisements
Advertisements
Question
Express each of the following product as a monomials and verify the result in each case for x = 1:
(3x) × (4x) × (−5x)
Solution
We have to find the product of the expression in order to express it as a monomial.
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( 3x \right) \times \left( 4x \right) \times \left( - 5x \right)\]
\[ = \left\{ 3 \times 4 \times \left( - 5 \right) \right\} \times \left( x \times x \times x \right)\]
\[ = \left\{ 3 \times 4 \times \left( - 5 \right) \right\} \times \left( x^{1 + 1 + 1} \right)\]
\[ = - 60 x^3\]
Substituting x = 1 in LHS, we get:
\[LHS = \left( 3x \right) \times \left( 4x \right) \times \left( - 5x \right)\]
\[ = \left( 3 \times 1 \right) \times \left( 4 \times 1 \right) \times \left( - 5 \times 1 \right)\]
\[ = - 60\]
Putting x = 1 in RHS, we get:
\[\text { RHS } = - 60 x^3 \]
\[ = - 60 \left( 1 \right)^3 \]
\[ = - 60 \times 1\]
\[ = - 60\]
\[\because\] LHS = RHS for x = 1; therefore, the result is correct
Thus, the answer is \[- 60 x^3\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
5x2 × 4x3
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
Evaluate each of the following when x = 2, y = −1.
\[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right)\]
Multiply:
(5x + 3) by (7x + 2)
Multiply:
(2x + 8) by (x − 3)
Multiply:
(x6 − y6) by (x2 + y2)
Multiply:
(2x2 − 1) by (4x3 + 5x2)
Show that: (9a − 5b)2 + 180ab = (9a + 5b)2
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2
Multiply:
16xy × 18xy