Advertisements
Advertisements
Question
Evaluate each of the following when x = 2, y = −1.
\[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right)\]
Solution
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right)\]
\[ = \left\{ \frac{3}{5} \times \left( - \frac{15}{4} \right) \times \frac{7}{9} \right\} \times \left( x^2 \times x \times x^2 \right) \times \left( y \times y^2 \times y^2 \right)\]
\[ = \left\{ \frac{3}{5} \times \left( - \frac{15}{4} \right) \times \frac{7}{9} \right\} \times \left( x^{2 + 1 + 2} \right) \times \left( y^{1 + 2 + 2} \right)\]
\[ = - \frac{7}{4} x^5 y^5\]
\[\therefore\] \[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right) = - \frac{7}{4} x^5 y^5\].
Substituting x = 2 and y = \[-\] 1 in the result, we get:
\[- \frac{7}{4} x^5 y^5 \]
\[ = - \frac{7}{4} \left( 2 \right)^5 \left( - 1 \right)^5 \]
\[ = \left( - \frac{7}{4} \right) \times 32 \times \left( - 1 \right)\]
\[ = 56\]
Thus, the answer is 56.
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
(7ab) × (−5ab2c) × (6abc2)
Find the following product:
2a3(3a + 5b)
xy(x3 − y3)
Find the following product:
4.1xy(1.1x − y)
Find the product 24x2 (1 − 2x) and evaluate its value for x = 3.
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Simplify : (x − y)(x + y) (x2 + y2)(x4 + y2)
Simplify : (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)
Show that: (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0