Advertisements
Advertisements
प्रश्न
Evaluate each of the following when x = 2, y = −1.
\[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right)\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right)\]
\[ = \left\{ \frac{3}{5} \times \left( - \frac{15}{4} \right) \times \frac{7}{9} \right\} \times \left( x^2 \times x \times x^2 \right) \times \left( y \times y^2 \times y^2 \right)\]
\[ = \left\{ \frac{3}{5} \times \left( - \frac{15}{4} \right) \times \frac{7}{9} \right\} \times \left( x^{2 + 1 + 2} \right) \times \left( y^{1 + 2 + 2} \right)\]
\[ = - \frac{7}{4} x^5 y^5\]
\[\therefore\] \[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right) = - \frac{7}{4} x^5 y^5\].
Substituting x = 2 and y = \[-\] 1 in the result, we get:
\[- \frac{7}{4} x^5 y^5 \]
\[ = - \frac{7}{4} \left( 2 \right)^5 \left( - 1 \right)^5 \]
\[ = \left( - \frac{7}{4} \right) \times 32 \times \left( - 1 \right)\]
\[ = 56\]
Thus, the answer is 56.
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Write down the product of −8x2y6 and −20xy. Verify the product for x = 2.5, y = 1.
Find the following product:
−11y2(3y + 7)
Find the following product:
250.5xy \[\left( xz + \frac{y}{10} \right)\]
Simplify: x3y(x2 − 2x) + 2xy(x3 − x4)
Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
Simplify : (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2
Multiply:
16xy × 18xy