Advertisements
Advertisements
प्रश्न
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2
उत्तर
LHS
\[ = \left( 4pq + 3q \right)^2 - \left( 4pq - 3q \right)^2 \]
\[ = 4\left( 4pq \right)\left( 3q \right) \left[ \because \left( a + b \right)^2 - \left( a + b \right)^2 = 4ab \right]\]
\[ = 48p q^2 \]
= RHS
Because LHS is equal to RHS, the given equation is verified.
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(2.3xy) × (0.1x) × (0.16)
Find the product −3y(xy + y2) and find its value for x = 4 and y = 5.
Simplify: a(b − c) − b(c − a) − c(a − b)
Simplify: a(b − c) + b(c − a) + c(a − b)
Simplify: a2b(a − b2) + ab2(4ab − 2a2) − a3b(1 − 2b)
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Simplify:
(5x − 3)(x + 2) − (2x + 5)(4x − 3)
Simplify : (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)
Show that: (9a − 5b)2 + 180ab = (9a + 5b)2