Advertisements
Advertisements
प्रश्न
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
उत्तर
To simplify, we will proceed as follows:
\[\left( x^3 - 2 x^2 + 5x - 7 \right)\left( 2x - 3 \right)\]
\[ = 2x\left( x^3 - 2 x^2 + 5x - 7 \right) - 3\left( x^3 - 2 x^2 + 5x - 7 \right)\]
\[ = 2 x^4 - 4 x^3 + 10 x^2 - 14x - 3 x^3 + 6 x^2 - 15x + 21\]
\[= 2 x^4 - 4 x^3 - 3 x^3 + 10 x^2 + 6 x^2 - 14x - 15x + 21\] (Rearranging)
\[= 2 x^4 - 7 x^3 + 16 x^2 - 29x + 21\] (Combining like terms)
Thus, the answer is \[2 x^4 - 7 x^3 + 16 x^2 - 29x + 21\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
Find each of the following product:
(7ab) × (−5ab2c) × (6abc2)
Find the value of (5x6) × (−1.5x2y3) × (−12xy2) when x = 1, y = 0.5.
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Simplify: a(b − c) + b(c − a) + c(a − b)
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Simplify:
(5x − 3)(x + 2) − (2x + 5)(4x − 3)
Show that: (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0
Multiply:
(12a + 17b) × 4c