Advertisements
Advertisements
प्रश्न
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e.,\[a^m \times a^n = a^{m + n}\].
We have:
\[\left( 2xy \right) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
\[ = \left( 2 \times \frac{1}{4} \right) \times \left( x \times x^2 \times x^2 \right) \times \left( y \times y \times y^2 \right)\]
\[ = \left( 2 \times \frac{1}{4} \right) \times \left( x^{1 + 2 + 2} \right) \times \left( y^{1 + 1 + 2} \right)\]
\[ = \frac{1}{2} x^5 y^4\]
\[\therefore\] \[\left( 2xy \right) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right) = \frac{1}{2} x^5 y^4\]
Substituting x = 2 and y = \[-\] 1 in the result, we get:
\[\frac{1}{2} x^5 y^4 \]
\[ = \frac{1}{2} \left( 2 \right)^5 \left( - 1 \right)^4 \]
\[ = \frac{1}{2} \times 32 \times 1\]
\[ = 16\]
Thus, the answer is 16.
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Find the following product:
−11y2(3y + 7)
Find the following product:
1.5x(10x2y − 100xy2)
Simplify: 3a2 + 2(a + 2) − 3a(2a + 1)
Simplify: x(x + 4) + 3x(2x2 − 1) + 4x2 + 4
Simplify:
x2(x + 2y) (x − 3y)
Simplify:
(x2 − 2y2) (x + 4y) x2y2
Simplify:
x2(x − y) y2(x + 2y)
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)