Advertisements
Advertisements
प्रश्न
Simplify:
x2(x + 2y) (x − 3y)
उत्तर
To simplify, we will proceed as follows:
\[x^2 \left( x + 2y \right)\left( x - 3y \right)\]
\[ = \left[ x^2 \left( x + 2y \right) \right]\left( x - 3y \right)\]
\[ = \left( x^3 + 2 x^2 y \right)\left( x - 3y \right)\]
\[ = x^3 \left( x - 3y \right) + 2 x^2 y\left( x - 3y \right)\]
\[ = x^4 - 3 x^3 y + 2 x^3 y - 6 x^2 y^2 \]
\[ = x^4 - x^3 y - 6 x^2 y^2\]
Thus, the answer is \[x^4 - x^3 y - 6 x^2 y^2\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
Find each of the following product:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
Find the following product: \[- \frac{4}{27}xyz\left( \frac{9}{2} x^2 yz - \frac{3}{4}xy z^2 \right)\]
Find the following product:
1.5x(10x2y − 100xy2)
Simplify: a2(2a − 1) + 3a + a3 − 8
Multiply:
(2x2y2 − 5xy2) by (x2 − y2)
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Show that: (9a − 5b)2 + 180ab = (9a + 5b)2
Solve the following equation.
2(x − 4) = 4x + 2