Advertisements
Advertisements
प्रश्न
Simplify:
(x2 − 2y2) (x + 4y) x2y2
उत्तर
To simplify, we will proceed as follows:
\[\left( x^2 - 2 y^2 \right)\left( x + 4y \right) x^2 y^2 \]
\[ = \left[ x^2 \left( x + 4y \right) - 2 y^2 \left( x + 4y \right) \right] x^2 y^2 \]
\[ = \left( x^3 + 4 x^2 y - 2x y^2 - 8 y^3 \right) x^2 y^2 \]
\[ = x^5 y^2 + 4 x^4 y^3 - 2 x^3 y^4 - 8 x^2 y^5\]
Thus, the answer is \[x^5 y^2 + 4 x^4 y^3 - 2 x^3 y^4 - 8 x^2 y^5\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
xy(x3 − y3)
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
Find the product −3y(xy + y2) and find its value for x = 4 and y = 5.
Simplify: 4ab(a − b) − 6a2(b − b2) − 3b2(2a2 − a) + 2ab(b − a)
Multiply:
(x2 + y2) by (3a + 2b)
Multiply:
[−3d + (−7f)] by (5d + f)
Simplify : (x − y)(x + y) (x2 + y2)(x4 + y2)
Show that: (9a − 5b)2 + 180ab = (9a + 5b)2
Multiply:
(12a + 17b) × 4c