Advertisements
Advertisements
प्रश्न
Simplify:
a2b2(a + 2b)(3a + b)
उत्तर
To simplify, we will proceed as follows:
\[a^2 b^2 \left( a + 2b \right)\left( 3a + b \right)\]
\[ = \left[ a^2 b^2 \left( a + 2b \right) \right]\left( 3a + b \right)\]
\[ = \left( a^3 b^2 + 2 a^2 b^3 \right)\left( 3a + b \right)\]
\[ = 3a\left( a^3 b^2 + 2 a^2 b^3 \right) + b\left( a^3 b^2 + 2 a^2 b^3 \right)\]
\[ = 3 a^4 b^2 + 6 a^3 b^3 + a^3 b^3 + 2 a^2 b^4 \]
\[ = 3 a^4 b^2 + 7 a^3 b^3 + 2 a^2 b^4\]
Thus, the answer is \[3 a^4 b^2 + 7 a^3 b^3 + 2 a^2 b^4\] .
APPEARS IN
संबंधित प्रश्न
Evaluate (3.2x6y3) × (2.1x2y2) when x = 1 and y = 0.5.
Find the value of (5x6) × (−1.5x2y3) × (−12xy2) when x = 1, y = 0.5.
Simplify: 3a2 + 2(a + 2) − 3a(2a + 1)
Multiply:
(5x + 3) by (7x + 2)
Multiply:
(7x + y) by (x + 5y)
Multiply:
(3x2 + y2) by (2x2 + 3y2)
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Simplify:
(x3 − 2x2 + 3x − 4) (x −1) − (2x − 3)(x2 − x + 1)
Simplify : (x − y)(x + y) (x2 + y2)(x4 + y2)