Advertisements
Advertisements
प्रश्न
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
उत्तर
To multiply, we will use distributive law as follows:
\[\left( \frac{3}{5}x + \frac{1}{2}y \right)\left( \frac{5}{6}x + 4y \right)\]
\[ = \frac{3}{5}x\left( \frac{5}{6}x + 4y \right) + \frac{1}{2}y\left( \frac{5}{6}x + 4y \right)\]
\[ = \frac{1}{2} x^2 + \frac{12}{5}xy + \frac{5}{12}xy + 2 y^2 \]
\[ = \frac{1}{2} x^2 + \left( \frac{144 + 25}{60} \right)xy + 2 y^2 \]
\[ = \frac{1}{2} x^2 + \frac{169}{60}xy + 2 y^2\]
Thus, the answer is \[\frac{1}{2} x^2 + \frac{169}{60}xy + 2 y^2\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[( - 7xy) \times \left( \frac{1}{4} x^2 yz \right)\]
Find each of the following product:
(7ab) × (−5ab2c) × (6abc2)
Express each of the following product as a monomials and verify the result in each case for x = 1:
(5x4) × (x2)3 × (2x)2
Find the value of (5x6) × (−1.5x2y3) × (−12xy2) when x = 1, y = 0.5.
Evaluate each of the following when x = 2, y = −1.
\[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right)\]
Multiply:
(2x + 8) by (x − 3)
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
Simplify:
(x3 − 2x2 + 3x − 4) (x −1) − (2x − 3)(x2 − x + 1)
Multiply:
(4x + 5y) × (9x + 7y)