Advertisements
Advertisements
प्रश्न
Express each of the following product as a monomials and verify the result in each case for x = 1:
(5x4) × (x2)3 × (2x)2
उत्तर
We have to find the product of the expression in order to express it as a monomial.
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n} \text { and } \left( a^m \right)^n = a^{mn}\]
We have:
\[\left( 5 x^4 \right) \times \left( x^2 \right)^3 \times \left( 2x \right)^2 \]
\[ = \left( 5 x^4 \right) \times \left( x^6 \right) \times \left( 2^2 \times x^2 \right)\]
\[ = \left( 5 \times 2^2 \right) \times \left( x^4 \times x^6 \times x^2 \right)\]
\[ = \left( 5 \times 2^2 \right) \times \left( x^{4 + 6 + 2} \right)\]
\[ = 20 x^{12} \]
\[\therefore\] \[\left( 5 x^4 \right) \times \left( x^2 \right)^3 \times \left( 2x \right)^2 = 20 x^{12} \]
Substituting x = 1 in LHS, we get:
\[\text { LHS } = \left( 5 x^4 \right) \times \left( x^2 \right)^3 \times \left( 2x \right)^2 \]
\[ = \left( 5 \times 1^4 \right) \times \left( 1^2 \right)^3 \times \left( 2 \times 1 \right)^2 \]
\[ = \left( 5 \times 1 \right) \times \left( 1^6 \right) \times \left( 2 \right)^2 \]
\[ = 5 \times 1 \times 4\]
\[ = 20\]
Put x =1 in RHS, we get:
\[RHS = 20 x^{12} \]
\[ = 20 \times \left( 1 \right)^{12} \]
\[ = 20 \times 1\]
\[ = 20\]
\[\because\] LHS = RHS for x = 1; therefore, the result is correct.
Thus, the answer is \[20 x^{12}\].
APPEARS IN
संबंधित प्रश्न
Write down the product of −8x2y6 and −20xy. Verify the product for x = 2.5, y = 1.
Evaluate (3.2x6y3) × (2.1x2y2) when x = 1 and y = 0.5.
Find the following product:
−5a(7a − 2b)
Find the following product:
250.5xy \[\left( xz + \frac{y}{10} \right)\]
Multiply:
(a − 1) by (0.1a2 + 3)
Multiply:
(3x2 + y2) by (2x2 + 3y2)
Simplify:
(x2 − 2y2) (x + 4y) x2y2
Simplify : (x − y)(x + y) (x2 + y2)(x4 + y2)
Show that: (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0
Solve:
(3x + 2y)(7x − 8y)