Advertisements
Advertisements
प्रश्न
Express each of the following product as a monomials and verify the result in each case for x = 1:
(x2)3 × (2x) × (−4x) × (5)
उत्तर
We have to find the product of the expression in order to express it as a monomial.
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n} \text { and } \left( a^m \right)^n = a^{mn}\]
We have:
\[\left( x^2 \right)^3 \times \left( 2x \right) \times \left( - 4x \right) \times 5\]
\[ = \left( x^6 \right) \times \left( 2x \right) \times \left( - 4x \right) \times 5\]
\[ = \left\{ 2 \times \left( - 4 \right) \times 5 \right\} \times \left( x^6 \times x \times x \right)\]
\[ = \left\{ 2 \times \left( - 4 \right) \times 5 \right\} \times \left( x^{6 + 1 + 1} \right)\]
\[ = - 40 x^8 \]
\[\therefore\] \[\left( x^2 \right)^3 \times \left( 2x \right) \times \left( - 4x \right) \times 5 = - 40 x^8\]
Substituting x = 1 in LHS, we get:
\[\text { LHS } { = \left( x^2 \right)^3 \times \left( 2x \right) \times \left( - 4x \right) \times 5\]
\[ = \left( 1^2 \right)^3 \times \left( 2 \times 1 \right) \times \left( - 4 \times 1 \right) \times 5\]
\[ = 1^6 \times 2 \times \left( - 4 \right) \times 5\]
\[ = 1 \times 2 \times \left( - 4 \right) \times 5\]
\[ = - 40\]
Putting x = 1 in RHS, we get:
\[\text { RHS } = - 40 x^8 \]
\[ = - 40 \left( 1 \right)^8 \]
\[ = - 40 \times 1\]
\[ = - 40\]
\[\because\] LHS = RHS for x = 1; therefore, the result is correct
Thus, the answer is \[- 40 x^8\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( - \frac{7}{5}x y^2 z \right) \times \left( \frac{13}{3} x^2 y z^2 \right)\]
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Multiply:
(2x + 8) by (x − 3)
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Multiply:
(x6 − y6) by (x2 + y2)
Multiply:
(2x2y2 − 5xy2) by (x2 − y2)
Simplify:
(x2 − 3x + 2)(5x − 2) − (3x2 + 4x − 5)(2x − 1)
Show that: \[\left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]
Multiply:
16xy × 18xy